13 research outputs found

    Design Analysis of a Sapce Based Chromotomographic Hyperspectral Imaging Experiment

    Get PDF
    This research develops the design of several components and/or systems for an experimental space-based chromotomographic hyperspectral imager that is being built by the Air Force Institute of Technology. The design work includes three separate topics. The first topic was the development of a structure utilizing finite element analysis and eigenanalysis for the ground-based version of the chromotomographic experiment (CTEx). The ground-based experiment was performed as a risk mitigation measure for the space-based experiment. The second topic includes a design review of a contractor\u27s proposed off-axis Mersenne telescope for the space-based chromotomographic hyperspectral imager. The work included the creation of preliminary verification requirements from the contract and sub- sequent analysis of the telescope design based on those requirements. The third topic addressed was a trade study of on-orbit focus, alignment, and calibration schemes for the space-based version of CTEx. The selected imaging focusing method entails imaging Earth-based sodium lights at night while stepping through several focus settings. The optimal focus setting shows the clearest sodium spectral features. The critical alignment concerns were identified as the alignment of the prism and of the collimated light onto the prism. The space-based CTEx utilizes three separate calibration methods involving vicarious Earth-based targets, and on-board laser diodes and spectral filters. The results of the research varied by topic. For the first topic, a structural assembly was successfully fabricated that allowed the goals of the ground-based CTEx to be met, validating the design approach. The design review for the second topic was successful with the contractor\u27s telescope design currently undergoing fabrication with delivery in May 2010. For the third topic, applicable methods and procedures were developed for the space-based CTEx

    Characterizing Strain Accumulation, Residual Stress, and Microstructure of Additive Manufactured Materials

    Get PDF
    Additive Manufacturing (AM) is a rapidly evolving fabrication technology beneficial for its cost-saving potential to produce complex, low-volume shapes. However, AM materials are currently limited to nonstructural applications due to variability in their structural integrity, particularly their fatigue lives. IN718, Ti64, and Al10MgSi specimens manufactured by Direct Metal Laser Sintering (DMLS) were characterized based on variation of post-processing techniques and build direction. To understand the impact of each variable, surface roughness, hardness, residual stresses, microstructure, and strain accumulation in response to Low Cycle Fatigue (LCF) were studied. The use of Electron Backscatter Diffraction (EBSD) provided grain orientation and grain size distributions in each material. This data also provided a grain boundary overlay to be used in conjunction with in-situ Digital Image Correlation (DIC) during LCF to analyze strain distribution with respect to grain characteristics. This work provides experimental background data to be used for computational modeling of the structural integrity of AM materials in order to establish relationships between microstructure and fatigue. The ultimate goal is to understand the influence of material type, post-processing, and build direction variables in AM processes so these materials can be further explored for structural applications

    Structural integrity of additive materials: Microstructure, fatigue behavior, and surface processing

    No full text
    Although Additive Manufacturing (AM) offers numerous performance advantages over existing methods, AM structures are not being utilized for critical aerospace and mechanical applications due to uncertainties in their structural integrity as a result of the microstructural variations and defects arising from the AM process itself. Two of these uncertainties are the observed scatter in tensile strength and fatigue lives of direct metal laser sintering (DMLS) parts. With strain localization a precursor for material failure, this research seeks to explore the impact of microstructural variations in DMLS produced materials on strain localization. The first part of this research explores the role of the microstructure in strain localization of DMLS produced IN718 and Ti6Al4V specimens (as-built and post-processed) through the characterization of the linkage between microstructural variations, and the accumulation of plastic strain during monotonic and low cycle fatigue loading. The second part of this research explores the feasibility for the application of select surface processing techniques in-situ during the DMLS build process to alter the microstructure in AlSi10Mg to reduce strain localization and improve material cohesion. This study is based on utilizing experimental observations through the employment of advanced material characterization techniques such as digital image correlation to illustrate the impacts of DMLS microstructural variation
    corecore